Copied to
clipboard

G = C42.508C23order 128 = 27

369th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.508C23, C4.292- 1+4, (D4×Q8)⋊11C2, C84Q84C2, C4⋊C4.173D4, (C4×D8).20C2, D4⋊Q842C2, C4.Q1642C2, (C2×Q8).241D4, C2.63(Q8○D8), D4.36(C4○D4), D4.D425C2, C4⋊C8.132C22, C4⋊C4.435C23, C4.51(C8⋊C22), (C4×C8).231C22, (C2×C8).115C23, (C2×C4).559C24, C4.SD1622C2, D4.2D4.2C2, C4⋊Q8.188C22, SD16⋊C443C2, C8⋊C4.58C22, C2.67(Q85D4), (C2×D8).148C22, (C2×D4).430C23, (C4×D4).198C22, (C2×Q8).255C23, (C4×Q8).190C22, C2.D8.205C22, Q8⋊C4.86C22, (C2×SD16).67C22, C4.4D4.78C22, C22.819(C22×D4), D4⋊C4.209C22, C42.28C2220C2, C22.50C2411C2, C4.260(C2×C4○D4), (C2×C4).635(C2×D4), C2.87(C2×C8⋊C22), SmallGroup(128,2099)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.508C23
C1C2C4C2×C4C42C4×D4D4×Q8 — C42.508C23
C1C2C2×C4 — C42.508C23
C1C22C4×Q8 — C42.508C23
C1C2C2C2×C4 — C42.508C23

Generators and relations for C42.508C23
 G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a2c, ece=bc, ede=b2d >

Subgroups: 352 in 186 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C2.D8, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22⋊Q8, C4.4D4, C422C2, C4⋊Q8, C4⋊Q8, C2×D8, C2×SD16, C22×Q8, C4×D8, SD16⋊C4, C84Q8, D4.D4, D4.2D4, D4⋊Q8, C4.Q16, C4.SD16, C42.28C22, D4×Q8, C22.50C24, C42.508C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2- 1+4, Q85D4, C2×C8⋊C22, Q8○D8, C42.508C23

Character table of C42.508C23

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P8A8B8C8D8E8F
 size 11114482222444444488888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-111111-11-1-11-11-1-1-111-1-1-1-111    linear of order 2
ρ31111111-111-11-11-1-1-1-1-11-11-11-11-1-11    linear of order 2
ρ41111-1-11-111-1-1-1-11-11-11-111-1-11-11-11    linear of order 2
ρ5111111-111111-111-1111-1-111-1-1-1-1-1-1    linear of order 2
ρ61111-1-1-11111-1-1-1-1-1-11-111111111-1-1    linear of order 2
ρ71111-1-1-1-111-1-11-1111-111-11-11-11-11-1    linear of order 2
ρ8111111-1-111-1111-11-1-1-1-111-1-11-111-1    linear of order 2
ρ9111111-1-111-1-11-1111-1-11-1-11-11-11-11    linear of order 2
ρ101111-1-1-1-111-1111-11-1-11-11-111-11-1-11    linear of order 2
ρ111111-1-1-111111-111-111-1-1-1-1-1111111    linear of order 2
ρ12111111-11111-1-1-1-1-1-11111-1-1-1-1-1-111    linear of order 2
ρ131111-1-11-111-11-11-1-1-1-111-1-11-11-111-1    linear of order 2
ρ141111111-111-1-1-1-11-11-1-1-11-111-11-11-1    linear of order 2
ρ1511111111111-11-1-11-111-1-1-1-11111-1-1    linear of order 2
ρ161111-1-1111111111111-111-1-1-1-1-1-1-1-1    linear of order 2
ρ1722220002-2-2220-2-202-200000000000    orthogonal lifted from D4
ρ1822220002-2-22-20220-2-200000000000    orthogonal lifted from D4
ρ192222000-2-2-2-2-202-202200000000000    orthogonal lifted from D4
ρ202222000-2-2-2-220-220-2200000000000    orthogonal lifted from D4
ρ212-22-2-2200-22002i00-2i000000002i0-2i00    complex lifted from C4○D4
ρ222-22-2-2200-2200-2i002i00000000-2i02i00    complex lifted from C4○D4
ρ232-22-22-200-2200-2i002i000000002i0-2i00    complex lifted from C4○D4
ρ242-22-22-200-22002i00-2i00000000-2i02i00    complex lifted from C4○D4
ρ254-4-44000400-4000000000000000000    orthogonal lifted from C8⋊C22
ρ264-4-44000-4004000000000000000000    orthogonal lifted from C8⋊C22
ρ274-44-400004-40000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2844-4-40000000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2
ρ2944-4-40000000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2

Smallest permutation representation of C42.508C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 25 17)(2 24 26 18)(3 21 27 19)(4 22 28 20)(5 15 9 64)(6 16 10 61)(7 13 11 62)(8 14 12 63)(29 37 41 35)(30 38 42 36)(31 39 43 33)(32 40 44 34)(45 53 51 57)(46 54 52 58)(47 55 49 59)(48 56 50 60)
(5 13)(6 14)(7 15)(8 16)(9 62)(10 63)(11 64)(12 61)(17 23)(18 24)(19 21)(20 22)(29 37)(30 38)(31 39)(32 40)(33 43)(34 44)(35 41)(36 42)(45 49)(46 50)(47 51)(48 52)(53 55)(54 56)(57 59)(58 60)
(1 57 27 55)(2 60 28 54)(3 59 25 53)(4 58 26 56)(5 44 11 30)(6 43 12 29)(7 42 9 32)(8 41 10 31)(13 36 64 40)(14 35 61 39)(15 34 62 38)(16 33 63 37)(17 51 21 47)(18 50 22 46)(19 49 23 45)(20 52 24 48)
(1 29)(2 30)(3 31)(4 32)(5 56)(6 53)(7 54)(8 55)(9 60)(10 57)(11 58)(12 59)(13 46)(14 47)(15 48)(16 45)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(25 41)(26 42)(27 43)(28 44)(49 63)(50 64)(51 61)(52 62)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,37,41,35)(30,38,42,36)(31,39,43,33)(32,40,44,34)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (5,13)(6,14)(7,15)(8,16)(9,62)(10,63)(11,64)(12,61)(17,23)(18,24)(19,21)(20,22)(29,37)(30,38)(31,39)(32,40)(33,43)(34,44)(35,41)(36,42)(45,49)(46,50)(47,51)(48,52)(53,55)(54,56)(57,59)(58,60), (1,57,27,55)(2,60,28,54)(3,59,25,53)(4,58,26,56)(5,44,11,30)(6,43,12,29)(7,42,9,32)(8,41,10,31)(13,36,64,40)(14,35,61,39)(15,34,62,38)(16,33,63,37)(17,51,21,47)(18,50,22,46)(19,49,23,45)(20,52,24,48), (1,29)(2,30)(3,31)(4,32)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(49,63)(50,64)(51,61)(52,62)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,37,41,35)(30,38,42,36)(31,39,43,33)(32,40,44,34)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (5,13)(6,14)(7,15)(8,16)(9,62)(10,63)(11,64)(12,61)(17,23)(18,24)(19,21)(20,22)(29,37)(30,38)(31,39)(32,40)(33,43)(34,44)(35,41)(36,42)(45,49)(46,50)(47,51)(48,52)(53,55)(54,56)(57,59)(58,60), (1,57,27,55)(2,60,28,54)(3,59,25,53)(4,58,26,56)(5,44,11,30)(6,43,12,29)(7,42,9,32)(8,41,10,31)(13,36,64,40)(14,35,61,39)(15,34,62,38)(16,33,63,37)(17,51,21,47)(18,50,22,46)(19,49,23,45)(20,52,24,48), (1,29)(2,30)(3,31)(4,32)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(49,63)(50,64)(51,61)(52,62) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,25,17),(2,24,26,18),(3,21,27,19),(4,22,28,20),(5,15,9,64),(6,16,10,61),(7,13,11,62),(8,14,12,63),(29,37,41,35),(30,38,42,36),(31,39,43,33),(32,40,44,34),(45,53,51,57),(46,54,52,58),(47,55,49,59),(48,56,50,60)], [(5,13),(6,14),(7,15),(8,16),(9,62),(10,63),(11,64),(12,61),(17,23),(18,24),(19,21),(20,22),(29,37),(30,38),(31,39),(32,40),(33,43),(34,44),(35,41),(36,42),(45,49),(46,50),(47,51),(48,52),(53,55),(54,56),(57,59),(58,60)], [(1,57,27,55),(2,60,28,54),(3,59,25,53),(4,58,26,56),(5,44,11,30),(6,43,12,29),(7,42,9,32),(8,41,10,31),(13,36,64,40),(14,35,61,39),(15,34,62,38),(16,33,63,37),(17,51,21,47),(18,50,22,46),(19,49,23,45),(20,52,24,48)], [(1,29),(2,30),(3,31),(4,32),(5,56),(6,53),(7,54),(8,55),(9,60),(10,57),(11,58),(12,59),(13,46),(14,47),(15,48),(16,45),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(25,41),(26,42),(27,43),(28,44),(49,63),(50,64),(51,61),(52,62)]])

Matrix representation of C42.508C23 in GL6(𝔽17)

400000
13130000
004000
000400
0004130
0040013
,
100000
010000
000100
0016000
0016001
0001160
,
100000
16160000
001000
0001600
0000160
000001
,
120000
16160000
0001150
0010015
0000016
0000160
,
1600000
0160000
003300
0031400
00301414
0003143

G:=sub<GL(6,GF(17))| [4,13,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,4,0,0,0,4,4,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,16,0,0,0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,1,0],[1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[1,16,0,0,0,0,2,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,15,0,0,16,0,0,0,15,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,3,3,3,0,0,0,3,14,0,3,0,0,0,0,14,14,0,0,0,0,14,3] >;

C42.508C23 in GAP, Magma, Sage, TeX

C_4^2._{508}C_2^3
% in TeX

G:=Group("C4^2.508C2^3");
// GroupNames label

G:=SmallGroup(128,2099);
// by ID

G=gap.SmallGroup(128,2099);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,723,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*c,e*c*e=b*c,e*d*e=b^2*d>;
// generators/relations

Export

Character table of C42.508C23 in TeX

׿
×
𝔽